
www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

CMSC201
Computer Science I for Majors

Lecture 22 – Algorithmic Analysis
& Hexadecimal Numbers

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Last Class We Covered

• Sorting algorithms

– Bubble Sort

– Selection Sort

– Quicksort

• Searching algorithms

– Linear search

– Binary search

2

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted3

Any Questions from Last Time?

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Today’s Objectives

• To learn about hexadecimal numbers

– To be able to convert between bin, dec, and hex

• To learn about asymptotic analysis

– What it is

– Why it’s important

– How to calculate it

• To discuss “run time” of algorithms

– Why one algorithm is “better” than another

4

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted5

Hexadecimal Numbers

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Decimal Representation

• Decimal uses 10 digits

– Decimal, deci = 10

– The digits used are 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9

6

5

104

4

103

2

102

1

101

0

100

7

105

8

106

9

107

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Binary Representation

• Binary uses 2 digits

– Binary, bi = 2

– The digits used are 0 and 1

7

1

24

1

23

1

22

1

21

0

20

0

25

0

26

1

27

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Hexadecimal Representation

• Hexadecimal (or just “hex”) uses 16 digits

– Hexadecimal, hex = 6 plus deci = 10  16

– The digits used are 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9

• And letters A (10), B (11), C (12), D (13), E (14), and F (15)

8

8

164

6

163

3

162

1

161

0

160

A

165

D

166

F

167

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Hexadecimal Representation

• Hexadecimal (or just “hex”) uses 16 digits

– Hexadecimal, hex = 6 plus deci = 10  16

– The digits used are 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9

• And letters A (10), B (11), C (12), D (13), E (14), and F (15)

9

8

164

6

163

3

162

1

161

0

160

A

165

D

166

F

167

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Hex to Binary Conversion

• A hexadecimal digit can be easily represented
as four digits of binary (with leading zeros)

• This makes conversion very simple

– 7A0F becomes 0111 1010 0000 1111

– 1100 0010 0110 1001 becomes C269
10

Hex Binary Hex Binary Hex Binary Hex Binary

0 0000 4 0100 8 1000 C 1100

1 0001 5 0101 9 1001 D 1101

2 0010 6 0110 A 1010 E 1110

3 0011 7 0111 B 1011 F 1111

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Hex to Decimal Conversion

• Possible to convert between decimal and hex

– But it requires calculating out multiples of 16

• Simpler to make a “side trip” to binary as
an in-between step when converting

– 240 becomes 1111 0000 becomes F0

• F0 is equal to (15 * 161) + (0 * 160) = 240 + 0 = 240

– 7D becomes 0111 1101 becomes 125

• 7D is equal to (7 * 161) + (13 * 160) = 112 + 13 = 125

11

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Number System Notation

• Because number systems share a subset of the
same digits, it may be confusing which is which

– For example, what is the value of 10?

• In decimal it’s 10, in binary it’s 2, and in hex it’s 16

• To prevent this, numbers may often be prefixed
with 0b, 0d, or 0x (binary, decimal, hex):

– 0b1100 is binary, and has a value of 12

– 0x15 is hexadecimal, and has a value of 21

12

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted13

Run Time

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Alphabetizing a Bookshelf

14

Video from https://www.youtube.com/watch?v=WaNLJf8xzC4

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Run Time

• An algorithm’s run time is the amount of
“time” it takes for that algorithm to run

– “Time” normally means number of operations or
something similar, and not seconds or minutes

• Run time is shown as an expression, which
updates based on how large the problem is

• Run time shows how an algorithm scales, or
changes with the size of the problem

15

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Example: Fibonacci Recursion

• Ideally, we want an algorithm that runs in a
reasonable amount of time, no matter how
large the problem

• Remember the recursive Fibonacci program?

– It runs within one second for smaller positions

– But the larger the position we ask for, the longer
and longer it takes

16

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Fibonacci Recursion
python fibEx.py (with position < 30):

< 1 second

python fibEx.py (with position = 30):

2 seconds

python fibEx.py (with position = 35):

8 seconds

python fibEx.py (with position = 40):

76 seconds

17

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Fibonacci Recursion
python fibEx.py (with position = 50):

Guess!

9,493 seconds

2 hours, 38 minutes, 13 seconds!!!

18

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Run Time for Linear Search

• Say we have a list that does not contain what
we’re looking for.

• How many things in the list does linear search
have to look at for it to figure out the item’s
not there for a list of 8 things?

• 16 things?

• 32 things?

19

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Run Time for Binary Search

• Say we have a list that does not contain what
we’re looking for.

• What about for binary search?

– How many things does it have to look at to figure
out the item’s not there for a list of 8 things?

– 16 things?

– 32 things?

• Notice anything different?

20

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Different Run Times

• These algorithms scale differently!

– Linear search does an amount of work
equal to the number of items in the list

– Binary search does an amount of work
equal to the log2 of the numbers in the list!

• By the way, log2(x) is basically asking “2 to what
power equals x?” (normally shown as lg(x))

– This is the same as saying, “how many times
must we divide x in half before we hit 1?”

21

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Bubble Sort Run Time

• For a list of size N, how much work do we do for
a single pass?
– N

• How many passes will we have to do?

– N

• What is the run time of Bubble Sort?
– N2

22

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Selection Sort Run Time

• What is the run time of finding the lowest
number in a list?

• For a list of size N, how many elements do
you have to look through to find the min?

• N

23

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Selection Sort Run Time

• For a list of size N, how many times would we
have to find the min to sort the list?

• N

• What is the run time of this sorting algorithm?

• N2

24

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Quicksort Run Time

• For a list of size N, how many steps does
it take to move everything less than the
“pivot” to the left and everything greater
than the “pivot” to the right?

• N

25

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Quicksort Run Time

• How many times will the algorithm divide the
list in half?

• lg(N)

• What is the run time of Quicksort?

• N * lg(N)

26

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Different Run Times

• As our list gets bigger and bigger,
which of the search algorithms is faster?

– Linear or binary search?

• How much faster is binary search?

– A lot!

– But exactly how much is “a lot”?

27

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted28

Asymptotic Analysis

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

What is “Big O” Notation?

• Big O notation is a concept in Computer Science

– Used to describe the complexity
(or performance) of an algorithm

• Big O describes the worst-case scenario

– Big Omega (Ω) describes the best-case

– Big Theta (Θ) is used when the best and worst
case scenarios are the same

29

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

A Simple Example

• Say we write an algorithm that takes in an list
of numbers and returns the maximum

– What is the absolute fastest it can run?
• Linear time – Ω(N)

– What is the absolute slowest it can run?
• Linear time – O(N)

– Are these two values the same?
• YES – so we can also say it’s Θ(N)

30

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Simplification

• We are only interested in the growth rate as
an “order of magnitude”

– As the problem grows really, really, really large

• We are not concerned with the fine details

– Constant multipliers are dropped
• So O(3 * N2) becomes simply O(N2)

– Lower order terms are dropped
• So O(N3 + 4N2) becomes simply O(N3)

31

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Asymptotic Analysis

• For a list of size N, linear search does N operations.
So we say it is O(N) (pronounced “big Oh of n”)

• For a list of size N, binary search does lg(N)
operations, so we say it is O(lg(N))

• The function inside the O() parentheses indicates
how fast the algorithm scales

32

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Worst Case vs Best Case

• Why differentiate between the two?

• Think back to selection sort

– What is the best case for run time?

– What is the worst case for run time?

• They’re the same!

– Always have to find each minimum by looking
through the entire list every time – Θ(N2)

33

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Bubble Sort Run Times

• What about bubble sort?

– What is the best case for run time?

– What is the worst case for run time?

• Very different!

– Best case, everything is already sorted – Ω(N)

– Worst case, it’s completely backwards – O(N2)

34

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Quicksort Run Times

• What about quicksort?

– Depends on what the “hinge” or “pivot” is

• This determines how many times we split

– But each split, we’ll need to compare each item
to the hinge in their respective part: O(N)

• Best case, pivot is exact center – Ω(N*lgN)

• Worst case, it’s an “edge” item – O(N2)

35

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Worst-case vs Best-case

• This is why, even though all three sorting
algorithms have same worst case run times...

– Quicksort often runs very, very quickly

– Bubble Sort often runs much faster than Selection

• How does this apply to linear search and
binary search? What are the best and worst
run times for these?

36

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Search Run Times

• Linear search:

– Best case: Ω(1)

– Worst case: O(N)

• Binary search:

– Best case: Ω(1)

– Worst case: O(lg(N))

37

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Why Care?

38

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Why Care?

39

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Why Care?

40

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Why Care?

41

19,311,800

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Why Care?

42

337,407,000,000,000,000

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Why Care?
• For large problems, there’s a huge difference!

• If we can do 1,000,000 operations per second,
and the list is 337.4 quadrillion items

– Binary search takes 0.000058 seconds

– Linear search takes 337,407,000,000 seconds

5,623,450,000 minutes

93,724,166 hours

3,905,173 days

10,699 years
43

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

• Hedy Lamarr

– Film star in 1930s - 1950s

– Patented a frequency-hopping
system that would make radio-
guided torpedoes hard to detect
or jam during World War II

– Technologies like Bluetooth and
Wi-Fi use similar methods

44

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Final Exam Locations

• Find your room ahead of time!

• Engineering 027 - Sections 2, 3, 4, 5, 6, 25

Section 22

• Meyerhoff 030 - Sections 8, 9, 10, 11, 12

Sections 14, 15, 16, 17

45

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Announcements

• Project 3 is due on Friday, May 10th

• Survey #3 is out now

• Course evaluations also out, please complete

• Final exam is Friday, May 17th from 6 to 8 PM

46

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Image Sources
• Alphabetizing a Bookshelf video screenshot:

– https://www.youtube.com/watch?v=WaNLJf8xzC4

• Graphs of x and log2(x) courtesy of Google equation grapher

• Hedy Lamarr:

– https://commons.wikimedia.org/wiki/File:Hedy_lamarr_-_1940.jpg

47

